

Technology Breakthrough

Monolithic 3D Non-Volatile Memory: RRAM, PCM

View along II plane

BL

WL

n+Si

n+Si

silicon Oxide

Peripheral circuits

View along III plane

Technology:

The monolithic 3D IC technology is applied to producing a monolithically stacked single crystal silicon bidirectional transistor selector RRAM or PCM memory. 1T-1R memory cells enjoy a low number (shared) of litho steps, Cu or Al wiring, and is a scalable architecture. An efficient bipolar RRAM is now possible. Peripheral circuits below the monolithic memory stack deliver control functions.

Monolithic 3D IC provides a path to reduce NVM bit cost without investing in expensive scaling down.

See reverse side for more on details monolithic 3D IC technology&NVM flow

Benefits:

- 2-3X the density of NAND with similar number of litho steps
- Single crystal silicon bidirectional transistor selector
- Shared litho steps among many memory layers
- All layer single crystal silicon provides negligible leakage & dramatically better performance/power
- Scalable: Multiple generations of costper-bit improvement for same equipment cost and process node: use the same fab for 3 generations
- > Forestalls next gen litho-tool risk
- Density & NV of Flash, but speeds and endurance approaching DRAM

Technology Breakthrough

Our low leakage 3D NVM technology provides:

- Shared litho steps to create stacked memory--low cost
- Compatible with whatever resistive material you choose
- ➤ Single crystal Si 3-terminal selectors allow bipolar operation

Layer Transfer Technology ("Ion-Cut")Defect-free single crystal obtained @ <400°C

Leveraging a mature technology (wafer bonding and ion-cleaving) that has been the dominant SOI wafer production method for over two decades.

Innovate and create multiple thin (10s – 100s nanometer scale) layers of virtually defect free Silicon by utilizing low temperature (<400°C) bond and cleave techniques, and place on top of active transistor circuitry. Benefit from a rich layer-to-layer interconnection density.

