Monolithic 3D Inc., the Next Generation 3D-IC Company
  • Home
  • Technology
    • Technology
    • Papers, Presentations and Patents
    • Overview >
      • Background
      • Why Monolithic 3D?
      • Paths to Monolithic 3D
      • Applications
    • Ion-Cut: The Building Block
    • Monolithic 3D Logic >
      • RCAT
      • HKMG
      • Laser Annealing
      • RCJLT
      • 3D Embedded RAM
      • 3D Gate Array
      • FPGA
      • Ultra Large Integration - Redundancy and Repair
    • Monolithic 3D Memory >
      • 3D DRAM
      • 3D Resistive Memories
      • 3D Flash
    • Monolithic 3D Electro-Optics >
      • 3D Image Sensors
      • 3D Micro-Displays
  • 3D-IC Edge
    • 3D-IC Edge
  • News & Events
    • News & Events
    • S3S15 Game Change 2.0 Video/P
    • Webcast
    • Webinar
    • Press Releases
    • In the News
    • Upcoming Events
  • About Us
    • About Us
    • History
    • Team
    • Careers
    • Contact Us
  • Blog
  • Simulators

Qualcomm overtakes Intel in market capitalization

11/13/2012

0 Comments

 
"Only the paranoid survive"
Picture
We have a guest contribution from Zvi Or-Bach, the President and CEO of MonolithIC 3D Inc. Zvi discusses about Qualcomm overtaking Intel in market capitalization.

On Nov 9, 2012 we learned that Qualcomm overtook Intel in market capitalization. Quite shocking news if one considers that Intel’s revenue is almost three times that of Qualcomm and its net margin is more than twice that of Qualcomm. Clearly investors evaluate Qualcomm using a different scale than what they use for Intel, as is evidenced by Qualcomm’s P/E of 20.12 vs. Intel's mere 9.07. EE Times explained it in an article that day stating: "In the eyes of investors who have driven up its market capitalization, the fact that Qualcomm is a fabless company relieves it of the burden of having to invest billions of dollars each year in process development and wafer fabs." However, given that TSMC, a pure foundry, has a P/E of 15.67, it behooves us to look for another explanation. It’s also worth noting that TSMC had a revenue growth of 2% in the last year, far less than Intel's 25.6%, and its net income actually went down vs. a net income growth by Intel of 213%!

My explanation is that it is all about IP strength. I will expand on it in the rest of this blog but as prime evidence I offer SanDisk, who sports a P/E of 20.78  yet has continued to invest heavily, together with its partner Toshiba, in fab capacity upgrades.

Let’s first look at the previous two decades as Intel grew consistently year after year while riding the PC business growth. During those years the team Intel + Microsoft was the exclusive vendor in the PC 'game'. All others had to compete neck to neck in this fast growing commodity market.  And as we all know, broad competition erodes margins and allows only the lowest cost producer to achieve some profits. In the case of PC this erosion actually pushed out the market creator - IBM - which eventually exited the market and sold its business to Lenovo. The only real winners back then were Microsoft and Intel, who had pivotal differentiating IP. Yes, Intel had a licensor - AMD - but as a licensor, AMD had to pay heavy royalties that impacted its profits, and helped those of Intel.

Both Intel and Microsoft were able to leverage there unique IP into years of growth and became the largest companies in their field.

But being the largest today does not guarantee the tomorrow. Or, as Andy Grove famously said, "only the paranoid survive".

The technology world is about change. While many of the changes are incremental, at times the paradigm changes too. The change that took away Intel’s and Microsoft’s unchallenged market and IP position was the shift to "smart mobile," or mobile internet, as is illustrated in the following chart.
Picture
The technology world is about change. While many of the changes are incremental, at times the paradigm changes as well
And with these changes new technology leaders have been emerging: companies such as  Apple, Qualcomm, and Google.

To make matters even worse, a small company - ARM - was able to create a disruptive change in the computing engine with its preferred computing architecture, first for 'smart mobile,' then for tablets, and now it seems to penetrate the PC and the server markets.

In my view, as soon as the investment community realized that Intel’s exclusive market and IP position is not relevant to the new market of Mobile Internet, it started to tune down Intel’s P/E. This trend even got stronger as investors became concerned regarding Intel’s position in the PC and server market.

It should be noted that in this context IP is not counted by the number of patents or the amount of trade secrets but rather by the ability to exclude competitors from major markets or extract royalties from those competitors, which may make you a winner even when you loose business. This is a status that Qualcomm and other companies such as SanDisk enjoy.


Economists estimate that two-thirds of the value of large businesses in the U.S. can be traced to intangible assets.[18] "IP-intensive industries" are estimated to generate 72 percent more value added (price minus material cost) per employee than "non-IP-intensive industries".[19][dubious – discuss] , as is illustrated by the following chart
Picture
So, is the game over for Intel??? Is the Market irrational, or is the Market perceptive?

Some pundits clearly think so, but given its leadership semiconductor technology, strong leading edge manufacturing infrastructure, and balance sheet, it is way too soon to call game over for Intel. But it would seem that Intel needs to introduce some real change in order to correct its course. Perhaps Intel should look back at what Andy Grove’s said and ask itself: does it really act like a paranoid company, or perhaps it is just the inverse.

We at MonolithIC 3D believe that the whole semiconductor industry is about to go through a major disruptive change. After 50 years of successful growth and progress by dimensional scaling, the time has come for a direction change, and the time is now for starting to embrace scaling-up, going for monolithic 3D. The current leaders in dimensional scaling, the NAND Flash vendors, seem to be leading the way. They are pushing ahead with monolithic 3D-NAND. This disruptive change will bring vast new opportunities, and those who will be early to embrace the change may be able to reap the IP reward.
submit to reddit
0 Comments

3D NAND Opens the Door for Monolithic 3D

10/1/2012

2 Comments

 
Picture
We have a guest contribution today from Israel Beinglass, the CTO of MonolithIC 3D Inc. Israel discusses the opportunities of 3D NAND with Monolithic 3D.

NAND technology, which is a subset of NVM (Non Volatile Memory), was invented by Fujio Masuoka of Toshiba back in 1984. Flash memory was presented at IEDM1984 by Dr. Masuoka and his colleagues [1].  The following is a short quote from the original paper “the cell is programmed by a channel hot carrier injection mechanism similar to EPROM. The contents of all memory cells are simultaneously erased by using field emission of electrons from a floating gate to an erased gate in a FLASH (Hence the name FLASH)”.  

Masuoka came back to the IEDM in 1987 and suggested a Flash NAND structure [2].
Intel created the first commercial NOR type of Flash chips in 1988. For the next few years some major developments occur in the Flash arena:
  • In 1989, Samsung and Toshiba created a NAND flash memory.
  • In 1994, Compact Flash was invented and introduced by SanDisk.
  • In 1999, the SD memory card was released by a combination of SanDisk, Toshiba and Matsushita.
  • In 2001, the world’s first 1 Gigabit Compact Flash card was introduced.
From 2006 onwards, NAND became the most scaled of devices beating out the microprocessor devices (see Figure 1). The current state of the art is 20nm (2x) technology, as the world’s appetite for storage is still strong. Flash Cards, SSD, Smartphone and Tablets are the leading growing applications.
Picture
Figure 1: Flash Vs. Microprocessor design rules cross over
NAND memory as a true cross point array with the control gate on top of the floating gate and only one contact for a whole string of cells has the smallest memory cell size as shown in Figure 2 In addition, when one adds with the capability of MLC (Multi Level Cells) to NAND devices, the bit density dramatically increases.
Picture
Figure 2: NAND, circuit diagram and SEM pictures in x and y directions.
The NAND market has been continuously growing for the last several years. Figure 3 shows the NAND revenue and Gigabytes increase since 2008 and the forward projection for the years 2012-2016.
Picture
Figure 3: NAND Revenue and Gigabytes growth
As the NAND technology has been moving to smaller and smaller process nodes some serious problems, physical and electrical surfaced:
           Physical Limitations:
  • Pattern scaling - lack of EUV is a major issue
  • Structure formation, Figure 4 depicts a 27nm NAND cell that shows how close the cells are getting to each other, and how much the aspect ratio is getting out of hand. This is a limiter to obtaining high yield.
          Electrical Limitations:
  • There is an increase in cell-to-cell interference in the word lines.
  • Capacitive coupling ratio has decreased
  • Dielectric leakage has increased
The number of electrons on the floating gate has decreased dramatically so much so that a small fluctuation in the number on the floating gate can make a huge effect on the cell function. Figure 5 describes the scaling induced phenomenon.
Picture
Figure 4: A 27nm NAND cell structure
Picture
Figure 5: Number of electrons on the FG decreases for advanced NAND technology nodes
It is a common understanding among the experts that the current NAND technology will not be able to be scaled down to the 10nm node.

The solution for this dilemma is the 3D NAND, which was initially proposed by Toshiba at the 2007 VLSI Symposium [3]. Toshiba unveiled its Bit Cost Scalable (BiCS) technology. BiCS makes use of a “punch-and plug” structure and charge trap memory films. Toshiba has fabricated a prototype 32-Gbit BiCS flash memory test array with a 16-layer memory cell using 60nm design rules, see Figure 6. Hynix, Samsung and Macronix have also come with their versions of the 3D NAND.
Picture
Figure 6: 3D NAND process steps, as described by Toshiba
The following are the key advantages of the 3D NAND:

  • With 3D NAND, scaling is no longer driven by lithography. The gate length is defined by deposition
  • The key steps to 3D NAND are
                                        - Build a multitude of oxide/nitride or oxide/doped polysilicon stacked layers
                                - Fill the deep memory holes or trench slits. The top foreseeable challenges are ultra-high-aspect ratio (>40:1) conductor etch and dielectric etch with high etch selectivity to the hard mask
  • 3D NAND is relatively straightforward for a DRAM maker since it has stacked SiO2 and polysilicon layers like a stacked capacitor DRAM, and trenches like a trench cell DRAM. 
  • 3D NAND is evolutionary, not revolutionary. 
  • The good news is continued cost reduction, smaller die sizes and more capacity. 
  • Installed NAND toolsets in the wafer Fabs can, for the most part, be reused, thereby extending the useful life of Fab equipment. 
  • 3D NAND technology is still basically NAND with all its inherent limitations of data reliability and performance: hence, generally well understood (evolutionary).
At this point all the NAND companies are putting a lot of effort to bring this process to high volume manufacturing; the current expectations are that in 2014-2015 it will be ready for prime time. 3D NAND will be a technology that will take us between the 2D planar NAND and whichever post-NAND technology emerges in the future.
Picture
Figure 7: 3D NAND effect on design rules
Figure 7 describes the essence of the advantage of moving from 2D to 3D NAND. The adoption of 3D NAND technology will remove the burden from the Litho (and hence EUV) into the much easier process steps (deposition). Of course there are other advantages as described above.

It is not too difficult to see the similarity between the up and coming 3D NAND and the Monolithic 3D approach. As we describe in our web site (www.monolithic3d.com) the advanced technology patented by MonolithIC 3D Inc. enables the fabrication of Monolithic 3D Integrated Circuits with multiple stacked transistor layers and ultra-dense vertical connectivity. Thus, it appears monolithic 3D-ICs with 2 device layers provide benefits similar to a generation of conventional scaling. Furthermore, just as conventional scaling reduces feature sizes every generation, monolithic 3D opens the road for many years of continuous scaling by ‘folding’ once, twice, and so forth without necessarily reducing feature sizes.


  1. F. Masuoka et. al IEDM 1984 pp464-467
  2. F. Masuoka et. al IEDM 1987 pp552-555
  3. H. Tanaka et al., Symp. on VLSI Tech. Dig., pp 14-15, 2007
submit to reddit
2 Comments

    Search Blog


    Meet the Bloggers


    Follow us


    To get email updates subscribe here:


    Recommended Links

    3D IC Community
    3D IC LinkedIn Discussion Group

    Recommended Blogs

    • 3D InCites by Francoise von Trapp
    • EDA360 Insider by Steve Leibson
    • Insights From the Leading Edge by Phil Garrou
    • SemiWiki by Daniel Nenni, Paul Mc Lellan, et al.

    Archives

    July 2024
    January 2024
    December 2023
    May 2023
    March 2022
    December 2021
    August 2021
    August 2018
    July 2018
    May 2018
    October 2017
    September 2017
    December 2016
    September 2016
    August 2016
    November 2015
    October 2015
    September 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    August 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012
    January 2012
    December 2011
    November 2011
    October 2011
    September 2011
    August 2011
    July 2011
    June 2011
    May 2011
    April 2011
    March 2011

    Categories

    All
    3d Design And Cad
    3d Ic
    3dic
    3d Nand
    3d Stacking
    3d Technology
    Brian Cronquist
    Dean Stevens
    Deepak Sekar
    Dram
    Education
    Heat Removal And Power Delivery
    Industry News
    Israel Beinglass
    Iulia Morariu
    Iulia Tomut
    Monolithic 3d
    Monolithic3d
    Monolithic 3d Inc.
    MonolithIC 3D Inc.
    Monolithic 3d Technology
    Moore Law
    Outsourcing
    Paul Lim
    Repair
    Sandisk
    Semiconductor
    Semiconductor Business
    Tsv
    Zeev Wurman
    Zvi Or Bach
    Zvi Or-Bach

    RSS Feed

Powered by Create your own unique website with customizable templates.