Monolithic 3D Inc., the Next Generation 3D-IC Company
  • Home
  • Technology
    • Technology
    • Papers, Presentations and Patents
    • Overview >
      • Background
      • Why Monolithic 3D?
      • Paths to Monolithic 3D
      • Applications
    • Ion-Cut: The Building Block
    • Monolithic 3D Logic >
      • RCAT
      • HKMG
      • Laser Annealing
      • RCJLT
      • 3D Embedded RAM
      • 3D Gate Array
      • FPGA
      • Ultra Large Integration - Redundancy and Repair
    • Monolithic 3D Memory >
      • 3D DRAM
      • 3D Resistive Memories
      • 3D Flash
    • Monolithic 3D Electro-Optics >
      • 3D Image Sensors
      • 3D Micro-Displays
  • 3D-IC Edge
    • 3D-IC Edge
  • News & Events
    • News & Events
    • S3S15 Game Change 2.0 Video/P
    • Webcast
    • Webinar
    • Press Releases
    • In the News
    • Upcoming Events
  • About Us
    • About Us
    • History
    • Team
    • Careers
    • Contact Us
  • Blog
  • Simulators

EUV vs. TSV: Which one will become production ready first?

7/31/2013

1 Comment

 
Picture
We have a guest contribution today from Israel Beinglass, the CTO of MonolithIC 3D Inc. Israel debates on the answer to an important question that is on everybody's mind these days.

Like every Semicon West show in the past, where many experts are brought together for showing the latest and greatest semiconductor manufacturing equipment and bringing numerous seminar/panel discussions, this Semicon West of 2013 was no different. Two major issues were discussed, which on the face of it look unrelated, that caught my attention:

Progress in

  1. 3D - TSV technology, and
  2. EUV
Obviously these two issues are very different, but they are quite similar in respect to the following:

1. As the advanced node progresses to smaller and smaller feature size we are getting closer to the "end of the road map" or the "end of Moore's law".

Going to EUV does alleviate some of the problems related to the current solution of double patterning (or quadruple in the future assuming, EUV doesn't come to fruition soon enough).

As well, utilizing 3D devices with TSV has, in the grand scheme, a similar outcome; namely, advancing the integration via 3D structures rather than continued scaling. Though in the future, 3D devices and advanced nodes could go hand in hand.

2. The big miss of the road map. When one looks at some old road maps from a few years ago, one can ask how did we, the industry, miss by so much?

This actually reminds me of another miss from a few years ago-the low k inter-metal dielectric. Fig. 1 shows the low k dielectric roadmap trend of various ITRS published roadmaps and the prediction in 1999 that by 2004 we would be using k<2 !! Obviously we know what happened and even today 14 years later it is hard to breakthrough a k value of 2.5. 
Picture
Figure1: low k Dielectric Road Map
Figures 2 and 3 show the roadmap for EUV and TSV, respectively. Both are of 2009 vintage. In each case the prediction of the road map vs. actual is startling.
Picture
Figure 2: EUV road map
Picture
Figure 3: TSV road Map
It is not the purpose of this blog to go over the reasons why the roadmaps of EUV and TSV missed the time table by miles, nor to blame anybody for it. There are many articles and discussions published on the subjects. Rather, I will touch on some of the highlights as well as try to make some conclusions regarding the pathway of the industry regarding these two important technologies.

EUV: The EUV technology has so far gone through monumental achievements vis-à-vis the incredible tasks of developing the next generation stepper technology. The amount of engineering and resources poured into it is unprecedented in the short history of the semiconductor industry and maybe so for other industries.

It looks like as I write this blog that the only barrier for the technology from becoming a HVM tool is EUV source power that can provide a high enough throughput. Many experts doubt that it could ever be achieved; however, there are many other experts saying that it is within a reach.

TSV: In this case I could see two totally unrelated issues:

1. Technology driven obstacles

2. Logistics and supply chain issues.

In the case of the TSV it is one of the few cases where the "power point" presentation(s) of the TSV idea are so convincing that it is actually hard to oppose it. However, when it comes to the fine details of the technology development, there are many issues that still need to be addressed and resolved. I believe that it is just a matter of time before the technical obstacles will be resolved and a unified standardized solution emerges. However, on the other hand, I see a real problem from the point of view of logistics, cost and supply chain of the technology, and I have some doubts if it can ever be resolved. For further discussion on this issue, please refer to: 3D IC Supply Chain: Still Under Construction, and to a detailed comment in EE Time published blog and comments re. Semicon West 3D - IC TSV, provided here below.

In summary, I believe that the industry will come with a solution for EUV before TSV becomes a production technology.

Yet there is another alternative to TSV and to EUV - it is the Monolithic 3D methods. Moreover, it is very likely that monolithic 3D will reach volume production before EUV and TSV. As we already see the  NAND Flash vendors ramping up for production of 3D NAND.

The detailed comment fromm EE Times re. Semicon West 3D - IC  TSV:

PictureUSER RANK CEO
Re: Semicon Showed Support for 3D ICs  
chipmonk0   7/18/2013 1:46:13 PM

" same old same old ... " !! With such pollyannaish coverage, I am afraid that TSVs will remain the next hot interconnect tech even 5 years from now !

To provide a counter-point to all this happy talk, SemiCon had invited me to lead a 1 hr discussion at the Show on "Roadmap for TSVs and Alternatives from a Technology perspective ". Since Herb was not there, here are the key points :

1. unlike previous Advanced Packaging technologies like Flip Chip which we developed at IDMs like Motorola & Intel with both deep / broad expertise and product commitments, the development of TSVs has been going on mostly at overseas Govt. funded Laboratories in fits and starts and has then jumped to Foundries / OSATs. Xilinx' use of 2.5-d to integrate poorly yielding FPGAs has led to much irrational exuberance and then disappointment.

2. In the Winter of 2010 - 11 Samsung reported the first Wide I/O DRAM stack using TSVs. Great bandwidth even at 200 MHz & terrific power eff. But what the blogosphere neglected to report was that the yields were down in the mud and since then not much has been heard about Wide I/O from Samsung. Instead they keep bringing out conventional LP DDR at ever higher Clock Rates. JEDEC has actually postponed Wide I/O to 2015. 
3.  The development of TSV technology has been going on in Fabs who do not have to be sensitive to stress issues common in "thick film" type laminates / composites as is the case for filled vias. It is only now that they are waking up to it. Stress effects depend on the sq. of via dia., hence the new interest in shrinking them below 5 um. But integration & reliability problems ( at high Aspect Ratios both get worse ) have not been thought through. Moreover, Bonding stacked chips using the current method ( a sort of pidgin version of the technology I had invented nearly 20 years ago at Motorola for GaAs Power Amps that went into Cell Phones ) also introduces residual stress, affects electron mobility and shifts timing. 

4. While these slow-poke Govt. funded Euro Labs rediscover stress effects on device perf. and the perils of Cu metallurgy applied indiscriminately, there is at least one small Company outside Chicago that has already shifted to the non - obvious ( at least to these TSV-niks ) yet theoretically sound choice of using Tungsten ( a brittle and poor electrical conductor which can be compensated by Design but unlike Cu a close CTE match with Si ).

5. But thats not all Folks - this tiny Co. with just 3 PhDs and Physicists has also solved the biggest TSV integration problem thats keeping all these Labs and various Tool Vendors new to the game ( in Herb's Osterreich they love to build big complex "Maschine" - Physics be damned ) -- intent on optimizing their individual process steps ( e,g. back up wafer bond / debond ) at the risk of compromising the whole process -- awake at night.

6. We did cover more, e,g. as to how to get the electrical benefits of TSVs w/o actually having to drill holes in live Silicon, circuitry and packages that make it possible. We already have some of these Alternatives ( using the concept of Active Interconnects ) under development - especially for the very large Server & SmartPhone markets - and have started publishing.

7. TSV development is orders of magnitude more complex than Flip Chip and would benefit from the same type of brutal, theory-driven Program Management practiced at the world's largest semiconductor Co., but since they have money in the Bank to stay on Moore's Law and thus continue single chip solutions they don't need TSVs that badly. So unless there is a radical shake - up in the TSV programs "outside", incl. at the Foundries, the present slow pace of TSV development will persist.

Morale : give TSVs a fair chance, they need a respite from these overly enthusiastic bloggers, embarassingly out of their depth, and at Conferences lets not blather about Supply Chain Issues, the technical probems are not all solved yet
submit to reddit
1 Comment

“Atoms Don’t Scale”=> What is Beyond 7nm (2019)?                                                               MonolithIC 3D™ - the Future of Semiconductor Scaling

7/23/2013

0 Comments

 
Picture
We have a guest contribution today from Brian Cronquist, MonolithIC 3D Inc.'s VP of Technology & IP. Brian discusses about MonolithIC 3D Inc.'s participation at Semicon West 2013.

Thanks to everybody who came by poster exhibition at the Silicon Innovation Forum at SemiconWest 2013 [SemiWest]! We really enjoyed talking with you about all the exciting possibilities for new products and processes that are enabled by monolithic 3D IC.

Here is Zvi 'guarding' the poster:
Semicon West 2013 Poster
Figure 1 - Zvi Or-Bach at Semicon West 2013
Atoms Don't Scale: Dennard type scaling is already reached diminishing returns and looks like going to 'hit the wall' near this decade's end. P. Farrar of IBM said it succinctly: Atoms Don't Scale, and Steve Punta of Intel said "hard to imagine good devices smaller than 10 lattices across - reached in 2020":
Picture
Figure 2
As well, Bob Cowell of Intel microprocessor fame, who is currently the head of DARPA's MTO (Microelectronic Technology Office)...the folks who are supposed to be looking way ahead...is publicly saying that Moore's Law is at its end and we will have (at least) a decade long gap (2020-2030) in device improvements:
Picture
Figure 3
Picture
Figure 4
We all know the trends...much higher lithography costs and litho driven defects, interconnect resistance and capacitance slowing performance, the connectivity is driving power budgets awry, and so on. And the result is that the historical cost trends that we have been enjoying are going to soon no longer be there. Will carbon nano-tubes, graphene, nanowires, InGaAs, spintronics,... save us? Not likely, and certainly not by 2020.

What's the Answer?

Monolithic 3D can utilize the existing infrastructure, so the usual 5-10 years of development of evolutionary concepts places this solution as being capable for answering the 2020 call. TSVs (parallel 3D), if the costs can be contained, can only address a very small part of the solution space.

Take a look at the monolithic 3D techniques and potential for more than Moore ever predicted. http://www.monolithic3d.com/3d-ic-edge1.html

As an industry, how are we going to fill the decade gap?

Give me a call or email if you want to talk more...

BC
submit to reddit
0 Comments

ASML at Semicon West 2013: SRAM scaling has Stopped!

7/18/2013

1 Comment

 

2nd edition of: "Dimensional Scaling and the SRAM Bit-Cell"

Picture
We have a guest contribution from Zvi Or-Bach, the President and CEO of MonolithIC 3D Inc. Zvi adds information to his previous blog post: Dimension Scaling and the SRAM Bit-Cell.

I just downloaded the ASML presentation from Semicon West2013 site - ASML's NXE Platform Performance and Volume Introduction. Slide #5  - IC manufacture's road maps - says it all.

Picture
Embedded SRAM will scale from 0.09µm² at 22-20nm node to 0.06µm² at 11-10nm node. In other words only 30% reduction instead of the 4x reduction expected of historical dimension scaling, to roughly 0.02µm²!!!

In our previous blog (attached below) that followed ISSCC 2013 we saw some early indication of this slowdown.  Yet we were still surprised to realize how bad it really is. This might explain why after resisting IBM and other pushes for embedded DRAM, Intel announced few month ago that its Haswell processor will incorporate embedded DRAM after all.

Another point from this ASML slide is the adaption of monolithic 3D by the NAND Flash vendors. We believe this is a start of a trend, and that logic vendors has now one more reason to follow it.

Previous Blog:

One Thing that ISSCC 2013 Highlighted to Us
Dimensional Scaling and the SRAM Bit-Cell

The IEEE International Solid-State Circuit Conference Feb 17-21, 2013 just ended in San Francisco last week, and the issue of dimensional scaling as it relates to EUV and future per transistor device cost was an important topic in the plenary session. One important, and perhaps overlooked, aspect of the industry’s scaling issue relates to the future of the SRAM bit-cell within this framework of dimensional scaling. We would like to shine some light on this impending issue.

As widely reported in the industry and articulated by ASML’s Executive VP & CTO Martin van den Brink at ISSCC 2013, there is substantial evidence that without EUV the cost of logic transistors is most likely going up with scaling. One slide he used to illustrate this is below:
Picture
The above slide arrived after Martin had presented another non-encouraging slide, showing the same view from three companies: a Broadcom chart of increasing cost per gate correlated with dimensional scaling, together with the now famous Nvidia chart of no more crossover of transistor cost below 28nm, and third a GlobalFoundries chart showing some limited value for EUV.
Picture
We may attribute Martin statements to ASML interest in promoting EUV, but since ASML has already received significant EUV participation from INTEL, Samsung and TSMC, it might indicate further bumps are on the road to bringing EUV to market. We don't know if EUV will ever become real, but we do know very well that it is been delayed, and delayed again, and delayed again. It was made public recently that EUV has probably already missed the 10nm process node -“10nm will be optical,” said Ajit Manocha, chief executive of GlobalFoundries.
An even more interesting slide was presented by van den Brink:

Picture
This chart brings up an important aspect of dimensional scaling that has not been discussed much before - the scaling of the SRAM bit-cell.  According to this chart, the SRAM bit-cell size might not be reduced from the 20nm to 10 nm node, and might even get larger at 7nm as it may need more than 8 transistors. (Sound familiar? Fabs are doing the same with BEOL metallization scaling…little or none)

Modern logic devices demand a significant amount of embedded SRAM. In fact, more than 50% of the typical logic device area is allocated for these SRAM as illustrated by the following chart of Semico (June, 2010) 
Picture
The dominant embedded SRAM bit-cell architecture has been the 6 transistor cell (6T). And for many years this very cell has been hand-crafted using special design rules independently developed by foundries for every new technology node. It makes sense: the SRAM cell is a unique structure that does not obey normal logic design rules as it drives output against output anytime a write cycle is being performed. In many cases it is the SRAM cell that is the most sensitive portion of the logic device to process parameter variations and this sensitivity greatly impacts end device yield.

It well known that scaling the SRAM bit-cell has become harder and harder. Some vendors have already moved away from the 6T bit-cell in preference to the 8T (eight transistors) bit-cell.  ISSCC 2013 had a significant number of papers that were presented using 8T SRAM.  The few papers who kept the 6T SRAM embedded in their logic devices were forced to add read/write support circuits and additional overhead to enable the 6T bit-cell to function reliably.

Since SRAM bit scaling is now not able to keep up with logic scaling, the overall end device cost scaling could be even more disappointing than the transistor or gate cost illustrations above. 

Of course, well aware of this trend, IBM has been promoting their embedded DRAM solution for years. In the recent Common Platform Forum Dr. Gary Patton, VP, IBM Semiconductor R& D Center, was very pleased to share that in their 32nm product line the use of the embedded DRAM has given IBM the equivalent of a process node scaling benefit. Yet, as of now, most other vendors have not adopted eDRAM due to the process complexity and cost it adds to the logic process. It fair to assume that the appetite for eDRAM will not grow with dimensional scaling as the DRAM capacitor will be very hard to scale, the extra power for supporting DRAM will not be available and the cost of advance process development to add in extra complexity will be too high.

Accordingly we can learn from the recent ISSCC that dimensional scaling is facing the cost challenges we were aware of before in addition to new challenges that we might not have been aware of: the cost and the active/passive power handicaps due to the incompatibility of the 6T SRAM  bit-cell with scaling.

As we have suggested before, now that monolithic 3D is practical, we could advance and maintain Moore's Law by augmenting dimensional scaling with 3D IC scaling. We could enjoy depreciated equipment charges for more years and much lower R&D engineering outlays that would bring down production and development costs, and also enjoy improvements to power and performance.

Another exciting option is to replace the 6T SRAM bit-cell with the 1T bi-stable floating body memory cell invented by Zeno Semiconductor.  The Zeno bit-cell provides two stable states, analogous to an SRAM while only consuming ~20% area of a traditional 6T SRAM and requires considerably less power.  The area and power savings over a traditional 6T SRAM improve further with scaling.  Most excitingly the Zeno bit-cell is compatible with existing logic processes.
submit to reddit
1 Comment

    Search Blog


    Meet the Bloggers


    Follow us


    To get email updates subscribe here:


    Recommended Links

    3D IC Community
    3D IC LinkedIn Discussion Group

    Recommended Blogs

    • 3D InCites by Francoise von Trapp
    • EDA360 Insider by Steve Leibson
    • Insights From the Leading Edge by Phil Garrou
    • SemiWiki by Daniel Nenni, Paul Mc Lellan, et al.

    Archives

    July 2024
    January 2024
    December 2023
    May 2023
    March 2022
    December 2021
    August 2021
    August 2018
    July 2018
    May 2018
    October 2017
    September 2017
    December 2016
    September 2016
    August 2016
    November 2015
    October 2015
    September 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    August 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012
    January 2012
    December 2011
    November 2011
    October 2011
    September 2011
    August 2011
    July 2011
    June 2011
    May 2011
    April 2011
    March 2011

    Categories

    All
    3d Design And Cad
    3d Ic
    3dic
    3d Nand
    3d Stacking
    3d Technology
    Brian Cronquist
    Dean Stevens
    Deepak Sekar
    Dram
    Education
    Heat Removal And Power Delivery
    Industry News
    Israel Beinglass
    Iulia Morariu
    Iulia Tomut
    Monolithic 3d
    Monolithic3d
    Monolithic 3d Inc.
    MonolithIC 3D Inc.
    Monolithic 3d Technology
    Moore Law
    Outsourcing
    Paul Lim
    Repair
    Sandisk
    Semiconductor
    Semiconductor Business
    Tsv
    Zeev Wurman
    Zvi Or Bach
    Zvi Or-Bach

    RSS Feed

Powered by Create your own unique website with customizable templates.