Cooling Three-Dimensional Integrated Circuits using Power Delivery Networks (PDNs)

Hai Wei, Tony Wu, Deepak Sekar⁺, Brian Cronquist^{*}, Roger Fabian Pease, Subhasish Mitra

Stanford University, Rambus⁺, MonolithIC 3D Inc.* Acknowledgement: FCRP C2S2, NSF

3D IC

3D Integration

Parallel 3D

TSVs

Sequential (Monolithic) 3D

Geometries

ILV: Inter-Layer Via

Geometries

PDN: Power Delivery Network

Key Result for Monolithic 3D

Key Result for Monolithic 3D

OpenSPARC T2 core-on-core

Thermal-aware PDN

No PDN in model

Layer 2 temperature map

Finite Element Method

Comsol (25µm × 25µm block)

Does not complete

Our Analysis Methodology

Full chip thermal analysis

Step 1: Abstraction

Step 1: Abstraction

• $k_z = Effective thermal conductivity in z direction$

k_z Computation

Copper blocks

k_z Computation

k_z Computation q∙∆z X : mean of X $k_z =$ $T_{top} - T_{bot}$ $\mathsf{T}_{top}(\mathsf{x},\mathsf{y})$ Heat flux q FEM Δz -

 $\mathsf{T}_{\mathsf{bot}}(\mathsf{x},\mathsf{y})$

Step 1: Abstraction

• 3D IC: linear system [Kemper THERMINIC 06]

Abstract

Model Verification

Published results

Published results Our results

Thermal Analysis: Example 1

• Average: 50 W/cm² per layer

Air cooling: 2 W/K·cm²

9 112 Power density (W/cm²)

Example 1 Results

Parallel 3D IC: area benefit

Example 1 Results

Parallel 3D IC: area benefit

Thermal Analysis: Example 2

• Average: 125 W/cm² per layer

Power distribution map Layer 1 Layer 2 Image: Comparison of the second second

Air cooling: 2 W/K·cm² 25 Temp. drop on heat sink: 125°C Po

25 281 Power density (W/cm²)

Thermal Analysis: Example 2

• Average: 125 W/cm² per layer

Power distribution map Layer 1 Layer 2

External liquid cooling: 10 W/K·cm² Temp. drop on heat sink: 25°C

25 281 Power density (W/cm²)

OpenSPARC T2 Core

- Industrial design: 45nm
- Power distribution for Black-Scholes application

Core-on-Core Stacking

Significant temperature benefit

Layer 2 temperature distribution

ILV density 10K ILVs/mm²

Cache-on-Core Stacking

Further temperature reduction

Layer 2 temperature distribution

ILV density 10K ILVs/mm²

Technology vs. Application

Acknowledgement

- FCRP C2S2, NSF
- Prof. H.-S. P. Wong, M. Shavezipur (Stanford)
- Robust Systems Group (Stanford)
- Z. Or-Bach (MonolithIC 3D Inc.)
- TM Mak (Intel)

Backup slides

Parallel vs. Monolithic 3D

	Parallel 3D	Monolithic 3D
Layer 2 silicon	Thick (> 1µm)	Thin (100 nm)
ILV density*	Low (400/mm ²)	High (40K/mm ²)

Existing Tools

	PDNs	Wide range of 3D ICs
Hotspot [Huang TVLSI 06]	X	\checkmark
3D-ICE [Sridhar ICCAD 10]	X	\checkmark
This work	\checkmark	\checkmark