

Monolithic 3D Integrated Circuits

Deepak C. Sekar, Brian Cronquist,

Israel Beinglass, Paul Lim, and Zvi Or-Bach

MonolithIC 3D Inc.

Outline

> Introduction

> Paths to Monolithic 3D

➤ IntSim v2.0: A 2D/3D-IC Simulator

Conclusions

The Interconnect Problem

- > Transistors improve with scaling, interconnects do not
- Even with repeaters, 1mm wire delay ~50x gate delay at 22nm node

The repeater solution consumes power and area...

- Repeater count increases exponentially with scaling
- At 45nm, repeaters >50% of total leakage power of chip [IBM]
- Future chip power, area could be dominated by interconnect repeaters [IBM] [P. Saxena, et al. (Intel), IEEE J. for CAD of Circuits and Systems, 2004]

We have a serious interconnect problem

What's the solution?

FRIDAY, FEBRUARY 12, 1960

Irvine Auditorium-9:00 A.M.-12:00 Noon

SESSION VII: Microelectronic Considerations

7.2: Speed, Power and Component Density in Multielement High-Speed Logic Systems

J. M. EARLY

Bell Telephone Laboratories, Inc.

Murray Hill, N. J.

Arrange components in the form of a 3D cube → short wires

James Early, ISSCC 1960

3D with TSV Technology

> TSV size typically >1um: Limited by alignment accuracy and silicon thickness

Industry Roadmap for 3D with TSV Technology

Intermediate Level, W2W 3D-stacking	2009-2012	2013-2015
Minimum TSV diameter	1-2 μm	0.8-1.5μm
Minimum TSV pitch	2-4 μm	1.6-3.0 μm
Minimum TSVdepth	6-10 μm	6-10 μm
Maximum TSV aspect ratio	5:1 - 10:1	10:1 - 20:1
Bonding overlay accuracy	1.0-1.5 μm	0.5-1.0 μm
Minimum contact pitch	2-3 μm	2-3 μm
Number of tiers	2-3	8-16 (DRAM)

ITRS 2010

- ➤ TSV size ~ 1um, on-chip wire size ~ 20nm → 50x diameter ratio, 2500x area ratio!!!
 Cannot move many wires to the 3rd dimension
- > TSV: Good for stacking DRAM atop processors, but doesn't help on-chip wires much

Can we get Monolithic 3D?

Requires sub-50nm vertical and horizontal connections

Focus of this talk...

The Monolithic 3D Challenge

- > A process on top of copper interconnect should not exceed 400°C
 - ➤ How to bring mono-crystallized silicon on top at less than 400°C
 - ➤ How to fabricate advanced transistors below 400°C
- \triangleright Misalignment of pre-processed wafer to wafer bonding step is ~1 μ
 - ➤ How to achieve 100nm or better connection pitch
 - ➤ How to fabricate a thin enough layer for inter-layer vias of ~50nm

Outline

> Paths to Monolithic 3D

Getting sub-50nm vertical connections

- Build transistors with c-Si films above copper/low k
 - → Avoids alignment issues of bonding pre-fabricated wafers
- ➤ Need <400-450°C for transistor fabrication → no damage to copper/low k</p>

Layer Transfer Technology (or "Smart-Cut") → Defect-free c-Si films formed @ <400°C

Bottom layer

Similar process (bulk-to-bulk) used for manufacturing all SOI wafers today

Sub-400°C Transistors

Transistor part	Process	Temperature
Crystalline Si for 3D layer	Bonding, layer-transfer	Sub-400°C
Gate oxide	ALD high k	Sub-400°C
Metal gate	ALD	Sub-400°C
Junctions	Implant, RTA for activation	>400°C

Junction Activation: Key barrier to getting sub-400°C transistors

In next few slides, will show 2 solutions to this problem... both under development. For other techniques to get 3D-compatible transistors, check out www.monolithic3d.com

One path to solving the dopant activation problem: Recessed Channel Transistors with Activation before Layer Transfer

<u>Idea 1</u>: Do high temp. steps (eg. Activate) before layer transfer

Layer transfer

<u>Idea 2</u>: Use low-temp. processes like etch and deposition to define (novel) recessed channel transistors

Idea 3: Silicon layer very thin (<100nm), so transparent, can align perfectly to features on bottom wafer

Note: All steps after Next Layer attached to Previous Layer are @ < 400°C

V-groove recessed channel transistor: Used in the **TFT industry** today

RCAT recessed channel transistor:

- Used in **DRAM production**
- @ 90nm, 60nm, 50nm nodes
- Longer channel length → low leakage, at same footprint
 - J. Kim, et al. Samsung, VLSI 2003 ITRS

Monolithic 3D with State of the Art Transistors

- Uses a novel combination of four ideas
 - Gate-Last Process and proper sequence of "lon-Cut"
 - Low Temperature Face-up Layer Transfer
 - Repeating Layouts
 - Innovative Alignment

A Gate-Last Process for Cleave and Layer Transfer

Step 1 (**std**): On donor wafer, fabricate standard dummy gates with oxide, poly-Si

Step 2 (std): Std Gate-Last

- ➤ Self-aligned S/D implants
- ➤ Self-aligned SiGe S/D
- ➤ High-temp anneal
- ➤ Salicide/contact etch stop or faceted S/D
- ➤ Deposit and polish ILD

A Gate-Last Process for Cleave and Layer Transfer

Step 3. Implant H for cleaving

Step 4.

- Bond to temporary carrier wafer (adhesive or oxide-to-oxide)
- ➤ Cleave along cut line
- ➤ CMP to STI

A Gate-Last Process for Cleave and Layer Transfer

Carrier Step 5. > Low-temp oxide deposition Bond to bottom layer Oxide-oxide bond Remove carrier Remove (etch) dummy gates, replace with HKMG **NMOS PMOS** Foundation Step 6 (**std**): On transferred layer: ➤ Etch dummy gates ➤ Deposit gate dielectric and electrode >CMP ➤ Etch tier-to-tier vias thru STI Fabricate BEOL interconnect **NMOS PMOS**

Novel Alignment Scheme using Repeating Layouts

- Even if misalignment occurs during bonding -> repeating layouts allow correct connections.
- Above representation simplistic (high area penalty).

A More Sophisticated Alignment Scheme

Outline

► IntSim v2.0: A 2D/3D-IC Simulator

IntSim: A CAD Tool Simulator for 2D or 3D-ICs [D. C. Sekar, J. D. Meindl, et al., ICCAD 2007]

IntSim v2.0 Contains models for Stochastic Chip power signal Power distribution interconnect prediction for Clocks 2D and 3D-ICs Heat removal Via blockage **Energy-optimized** Logic gates repeater insertion Iterative top-level algorithm used to handle dependencies between models

Outputs

- Chip power
- Metal level count
- Wire pitches of different metal levels

Open-source tool, available for use at www.monolithic3d.com

IntSim v1.0: Built at Georgia Tech in Prof. James Meindl's group (by Deepak Sekar, now @ MonolithIC 3D) IntSim v2.0: Extended IntSim v1.0 to monolithic 3D using 3D wire length distribution models in the literature

Inputs

Die area

Gate count

Frequency

Rent's parameters

Number of strata

(1 if 2D, >=2 for 3D)

IntSim v2.0: Uses a novel algorithm to combine many models

Monolith((4:)

Stochastic Signal Wire Length Distribution Model

Number of wires of length I = Function(Number of gates, die size, strata, feature size, Rent's constants)

Number of wires of length between I and I+dI = idf(I) dI

- Models from J. Davis, A. Rahman, J. Meindl, R. Reif, et al.
 [A. Rahman, PhD Thesis, MIT 2001] [J. Davis, PhD Thesis, Georgia Tech, 1999]
- D model → fits experimental data reasonably well [J. Davis, PhD Thesis, GT, 1999]
 3D model → same methodology

Compare 2D and 3D-IC versions of the same logic core with IntSim

22nm node 600MHz logic core	2D-IC	3D-IC 2 Device Layers	Comments
Eff. Metal Levels	10	10	
Average Wire Length	6um	3.1um	
Av. Gate Size	6 W/L	3 W/L	Since less wire cap. to drive
Die Size (active silicon area)	50mm ²	24mm ²	3D-IC → Shorter wires → smaller gates → lower die area → wires even shorter 3D-IC footprint = 12mm ²
Power	Logic = 0.21W	Logic = 0.1W	Due to smaller Gate Size
	Reps. = 0.17W	Reps. = 0.04W	Due to shorter wires
	Wires = 0.87W	Wires = 0.44W	Due to shorter wires
	Clock = 0.33W	Clock = 0.19W	Due to less wire cap. to drive
	Total = 1.6W	Total = 0.8W	

3D with 2 device layers → 2x power reduction, ~2x active silicon area reduction vs. 2D

Scaling with 3D or conventional 0.7x scaling?

Analysis with IntSim v2.0 Same logic core scaled	2D-IC @22nm	2D-IC @ 15nm	3D-IC 2 Device Layers @ 22nm
Frequency	600MHz	600MHz	600MHz
Eff. Metal Levels	10	12	10
Footprint	50mm ²	25mm ²	12mm ²
Total Silicon Area (a.k.a "Die size")	50mm ²	25mm ²	24mm ²
Average Wire Length	6um	4.2um	3.1um
Av. Gate Size	6 W/L	4 W/L	3 W/L
Power	1.6W	0.7W	0.8W

- > 3D can give you similar benefits vis-à-vis a generation of scaling for a logic core!
- ➤ Without the need for costly lithography upgrades!!!
- Let's understand this better...

Theory: 2D Scaling vs. 3D Scaling

	2D Scaling (0.7x Dennard scaling)		Monolithic 3D Scaling	
	Ideal	Today, V _{dd} scales slower	(2 device layers)	
Chip Footprint	2x reduction		2x-4x reduction	
Long wire length $\alpha\sqrt{\text{Footprint}}$	0.7x reduction		0.7x-2x reduction	
Long wire capacitance	0.7x reduction		0.7x-2x reduction	
Long wire resistance	>0.7x increase		0.7x-2x reduction	
Gate Capacitance	0.7x reduction		Same	
Driver (Gate) Resistance (Vdd/ldsat)	Same	Increases	Same	

Overall benefits seen with IntSim have basis in theory

> 2D scaling scores: Gate capacitance

> 3D scaling scores: Wire resistance, driver resistance, wire capacitance

Outline

Conclusions

Conclusions

- **► Monolithic 3D Technology possible and practical:**
 - Recessed Channel Transistor
 - SOA gate-last HKMG transistor
- ➤ IntSim v2.0, a CAD tool to simulate 2D and 3D-ICs
 - Useful for architecture exploration, technology predictions and teaching
 - Open source tool, anyone can contribute!
- > 3D scaling
 - → Benefits similar to a generation of feature size scaling (2D), but without costly litho upgrades or expensive R&D

Backup slides

Technical Literature: [J. Davis, J. Meindl, K. Saraswat, R. Reif, et al., Proc. IEEE, 2001]

Simulation study: Frequency = 450MHz, 180nm node ASIC-like chip

Tremendous benefits when vertical connectivity ~ horizontal connectivity.

3x reduction in total silicon area + 12x reduction in footprint

vs. a 2D implementation, even @ 180nm node

Technical Literature: [L. Zhou, R. Shi, et al, Proc. ICCD 2007]

CNRS - INPG - BIF

"Implementing a 2-Gbs 1024-bit ½-rate Low-Density Parity-Check Code Decoder in Three-Dimensional Integrated Circuits"

Lili Zhou, Cherry Wakayama, Robin Panda, Nuttorn Jangkrajarng, Bo Hu, and C.-J. Richard Shi University of Washington

International Conference on Computer Design, ICCD, Oct. 2007

Comparison between 3D and 2D designs

	2D design	3D design	
Area (mm*mm)	18.238*15.92 = 290.35	(6.4*6.227)*3 = 119.56	
Total wire length (m)	182.42	22.39+22.57+22.46 =67.42	
Max WL before buffer insertion (mm)	13.82	8.68	
Max WL after buffer insertion (mm)	4	4	
Buffer used	32900	24636	
Clock skew (ns)	2.33	1	
Power dissipation (mw)	646.2	260.2	

Performance Factor (Area * Timing * Power) = 14

Final layout view of 3D LDPC structure.

Did layout of 2D and 3D-ICs, and showed more than 10x benefit

Technical Literature: Synopsys @ RTI 3D Workshop, Dec. 2010

"3D" IC Integration Looks Great...

Technology Node nth 2D ≅ Technology Node (n-2)th 3D

- Much easier D and A&M/S integration
- Smaller footprint, higher bandwidth
- Shorter global interconnect
 - 3 tier **→** -33%, 4 tier **→** -50%
- Better timing and lower power

ı

Silicon area = L^2 , Footprint = L^2 Corner to corner distance = 2L Silicon area = L^2 , Footprint = L/4Corner to corner distance = $L + \varepsilon$

e.g. L/2

CONFIDENTIAL 15 © Synopsys 2010

3D-ICs: The Heat Removal Question

- Sub-1W smartphones, cellphones and tablets the wave of the future
- \rightarrow Heat removal not a key issue there \rightarrow can 3D stack. Also, shorter wires \rightarrow net power reduced.

Escalating Cost of Litho to Dominate Fab and Device Cost

The Dilemma of the Semiconductor Industry

- Chip-makers need to keep pace with technology and focus on design
- ...while chip manufacturing and technology R&D continue to grow in cost and complexity

Other parts of the industry (eg. flash memory) → actively exploring SCALE-UP as alternative to SCALE-DOWN

Bit-cost of flash memory if current trends continue [Source: Toshiba, VLSI 2007]

Toshiba's monolithic 3D solution, BiCS

- Flash memory moving to quad patterning at the 1x nm node → costly.
 Future litho roadmap (eg. EUV) risky.
- ➤ Smaller feature size flash memory cells → degrade severely.

Toshiba, Samsung, SanDisk, Micron, Hynix's flash memory roadmaps

→ monolithic 3D top option beyond 1x nm node

RCATs vs. Planar Transistors: Experimental data from Samsung 88nm devices

From [J. Y. Kim, et al. (Samsung), VLSI Symposium, 2003]

RCATs vs. Planar Transistors (contd.): Experimental data from Samsung 88nm devices

From [J. Y. Kim, et al. (Samsung), VLSI Symposium, 2003]

Logic gate model

Logic gates:

Two input NAND gates with average wire length, fan-out user defined

Find W for a certain performance target

Global interconnect model

Global wire pitch obtained based on two conditions:

- (1) Signal bandwidth maximized with power grid IR drop requirement being reached
- (2) Wire pitch big enough to drive a clock H tree of a certain length

Results match well with commercial processors [D. C. Sekar, et al., IITC 2006]

Local and semi-global interconnect model

Condition 1:

Wiring area available = Wiring needed for routing the stochastic wiring distribution

$$e_w 2A = \chi P \sqrt{\frac{A}{N_{sockets}}} \int_{l_{min}}^{l_{max}} li(l)dl$$

Condition 2:

RC delay of longest signal wire in each wiring pair = fraction of clock period

For wires with repeaters, new Energy-Delay Product repeater insertion model used

Condition 3:

Wire efficiency $(e_w) = 1$ – fraction of wiring area lost to power wiring, via blockage

[Sarvari, et al. - IITC'07] [Q. Chen, et al. - IITC'00]

Thermal model

- ldea: Use V_{DD}/V_{SS} contacts of each stacked gate to remove heat from it. Design standard cell library to have low temp. drop within each stacked gate.
- **▶** Low (thermal) resistance V_{DD} and V_{SS} distribution networks ensure low temp. drop between heat sink and logic gate
- **▶** IntSim v2.0: Computes temp. rise of 3D stacked layers using models.

Algorithm used to combine together all these models

- 1. User inputs parameters
- 2. Logic gate sizing
- 3. Select rough initial power estimate
- 4. Design multilevel interconnect network (including power distribution) for 3D chip with this power estimate
- 5. Find power predicted by IntSim v2.0
- 6. Is predicted power = initial power? If yes, this is the final interconnect network. If no, choose new initial power estimate = average of previous initial power estimate and IntSim v2.0 estimate. Go to step 4.
- 7. Output data

Iterative process used for designing chip

Demo

IntSim v2.0 App

Utility of IntSim v2.0:

- Pre-silicon optimization and estimation of frequency, power, die size, supply voltage, threshold voltage and multilevel interconnect pitches
- Study scaling trends and estimate benefits of different technology and design modifications
- Undergraduate and graduate courses in universities for intuitive understanding of how a VLSI chip works

Monolithic 3D → Can use cheap depreciated equipment and still get the benefits of feature size scaling

Equipment value depreciates 50% every 2 years

Mask cost for a certain feature size goes down 50% every 2 years

For the calculations in this presentation,

- 22nm 2D = Year 'x', 15nm 2D = Year 'x+2'
- 22nm 2 layer 3D = Year 'x+2', depreciated equipment previously used for 22nm 2D

Cost per Die using Sematech Cost-Of-Ownership Methodology

Assumptions:

Die has 50% logic, 50% SRAM. SRAM area → no reduction with monolithic 3D (pessimistic)

	Relative Wafer Cost	Relative Die Size	Relative Cost per die	Cap-ex for upgrade
22nm 2D	1	1	1	
15nm 2D	1.16	0.5	0.6	\$4B if all tools changed \$800M-\$1.1B if only tools related to critical litho steps are changed
22nm 3D 2 layers	0.8	0.75	0.6	\$150M
32nm 3D 4 layers	0.54	1.25	0.67	

SCALE-UP → Gives similar cost per die benefits as SCALE-DOWN. But with far less capital expenditure. Largely due to use of depreciated equipment.

Cost-of-Ownership using Sematech Methodology

Equipment depreciation = Tool costs, Maintenance = 7.5% of capex, Building overhead = Cost of facility and labor, Material costs = Masks and chemicals, equivalent of 20k wspm

Monolithic 3D \rightarrow use depreciated equipment \rightarrow lower equipment cost \rightarrow lower wafer cost

Cost Summary

600MHz Die with 50% logic , 50% SRAM	2D-IC @22nm	2D-IC @ 15nm	3D-IC 2 Device Layers @ 22nm
Power	1.6W	0.7W	0.8W
Cost per die	1	0.6	0.6
Capital-expenditure for upgrade		\$4B if all tools changed, \$800M-\$1.1B if only tools related to critical litho steps changed	\$150M

Monolithic 3D scaling gives

- > Performance, power and cost benefits of feature-size scaling
- But without the large cap-ex, litho risk and production ramp times
- ➤ Flash industry → already taken this route, numbers indicate viability for logic too

